Finine impulse response (FIR) filter using least-squares error minimization.


In [1]:
%pylab inline


Populating the interactive namespace from numpy and matplotlib

In [2]:
from scipy import signal

In [3]:
signal.firls?

In [4]:
# filter parameters
srate   = 1024 # samples per second
nyquist = srate/2
frange  = [20,45] # range of frequencies (lower than Nyquist)
transw  = .1 # transition zone is 10%
order   = int( 5*srate/frange[0] )

In [5]:



Out[5]:
256

In [ ]: